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A function f with compactly supported Fourier transform can be approximated
by a step function a which coincides with f at regularly spaced points sk, k E l.
For suitable s, the functions f and a have the same LZ norm. By modifying a so
that its Fourier transform shares the same compact support as that of f, an
analytic function is obtained which approximates f, the accuracy depending on s.
t:, 1994 Academic Press. Inc.

1. INTRODUCTION

A function f belonging to L2 and with Fourier transform i supported
on a closed interval is called a Paley-Wiener function [8]. The signals
occurring in modern communications, such as radio and television, are
modelled in a natural way by Paley-Wiener functions (but with some
paradoxes which need not concern us here; see [12, 14]). In order to
reconstruct such signals from their sampled values (f(sk », k E Z, a
standard practice is to construct a step function from f, then to smooth
the step function by restricting its Fourier transform.* Our purpose here is
to analyse the error involved in this type of approximation in a general
setting which includes multidimensional sampling. The emphasis however
is on the case of the one-dimensional or single variable multiband signal,
where the spectrum (Fourier transform) is supported on a union of
intervals, and on a connection with a local average (Theorem 1.2 below).

* There is a nice discussion from an engineering standpoint of the reconstruction of !owpass
signals in "Principles of pulse code modulation," K. W. CATTERMOLE, I1itfe Books Ltd.,
London, (969).
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We consider the class of L 2 functions f: IR --+ IR with Fourier transform
I vanishing outside a bounded set A; thus the closure of A contains the
support of f This class will be denoted by PWA . For suitable positive
numbers s depending on A, the functions f have a natural step-function
approximation given by horizontal segments of length s with midpoints at
the points (sk,f(sk)), k E Z. By putting the Fourier transform to zero
outside A, an analytic function is obtained. The question of how well this
function approximates the original function f is answered using a general
isation of the Whittaker-Kotel'nikov-Shannon sampling theorem.

The following notation will be used. The Lebesgue measure of the set A
will be denoted by f.L(A) and Ilfll will denote the usual L 2 norm unless
indicated otherwise by a subscript. The Fourier transform will be nor
malised so that I is given by

I(x) = jf(t)e- 217U
( dt,

~

and .'7 will denote the Fourier transform operator with .'7- 1 the inverse
operator.

Paley-Wiener functions f with Fourier transform vanishing outside
( - w, w) can be represented by Whittaker's Cardinal series in terms of
values at the points k /2 w as

1 " (k) sin 27TW(X - k/2w)
f(x) = - f..J f -

2w kEl 2w 7T( X - k/2w)

= L f(~)sinc27Tw(x - ~),
kEl 2w 2w

where the sinc function is defined by

(1)

(

sin x
sinc x = -x-'

1,

x * 0,

x = 0,

and the convergence is uniform. This result [3, 9, 15] is also known as the
Whittaker-Kotelnikov-Shannon sampling theorem. It has been extended
from the case where the Fourier transform vanishes outside an interval
symmetric about the origin to that where it vanishes outisde a measurable
set A, say, which for some positive real number s satisfies a "disjoint
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translates" condition that
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for each non-zero k [4, 13]. This is equivalent to the "difference set"
condition

1
D(A) n -2 = {O},

s
(2)

where D(A) = {u - u': u, u' E A}. If this condition holds for A and s,
and if the Fourier transform f of ! vanishes outside A, then

f(x) = s L f(sk)J e2rriu(x-sk)du = s L !(Sk)XA(X - sk), (3)
kEZ A kEZ

where the convergence is uniform [4]. The difference set condition implies
that l/s ~ JL(A). This is important as by a result of Landau [11], in order
to reconstruct a function f precisely (and stably), the sampling rate (here
l/s) must be at least the measure of the support of the Fourier trans
form f.

The step-function a which forms the first part of the approximation to
the function f is given by

a(x) = L !(sk)X[-s/2.s/2)(X - sk)
kEL

(4)

and coincides with f at the midpoint sk of each interval [s(k - 1/2),
s(k + 1/2», k E 2. For convenience we take the sample f(sk) to be at
the center of the horizontal segment, rather than at the left edge (as is the
practice in electronics). The only difference is an irrelevant phase shift of
s/2.

Let us denote the operation of constructing a by.w', thus

.w': (f( sk» ~ a.

In fact, .w': t 2 ~ L2(~). The following lemma shows more: it is an
isometry.

1.1. LEMMA. Let f E PWA • Then

lIall = SI/211!(sk)llt 2 = II!II.
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Proof For

XX[-,/2,s/2)(X - sk') dx

where, because s satisfies (2), the last equality holds by [4, Thm. 2]. I

Of course a is not continuous and the support of its Fourier transform
ais the whole real line. In order to smooth a, subject it to the "band-limit
ing" operator ,q; = y- IXA Y, where here XA is taken to mean multiplica
tion by xiu), i.e., (xAyXfXu) = xiu)(YfXu). Let

,q;:a ....... r;

then we can define

9f =,q;.>¥': (f(sk)) ....... r.

This is not the only possible choice for a smooth approximation to the
original function f (for instance, smooth bump functions or splines could
be used to remove the discontinuities from a), but it is a natural one since
the support of the Fourier transforms of the smoothed step-function rand
the original function f are the same. Now the function r is given by
r =,q;(a) = y-'XAYa = (XAtlt and we will show that

r( x) = sf L f( sk )sinc( 7r su )e 2'Jri(X-sk)u du.
AkEl'

(5)

Surprisingly, this process of deriving r from f (via the samples of J) has
an alternative formulation in terms of a "moving average" operator ./t
which does not involve Fourier transformation.

1.2. THEOREM. Let

1 jX+S/2 11m(x) = (Lf)(x) = - f(u) du = - f(V)X[-s/2.s/2j(X - v) duo
s x-s/2 S Ill:

Then m(x) = r(x).
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Proof From [4, Thm. 5],

lim f If(u) - s E f(Sk)e21riSkUI2 du = 0,
N-->oo A k=-N

so that

lim f (f(u) - S f !(Sk)e2rriSkU)sinC(7rSU)e21riXU du
N-->oo A k~-N

437

= O.

Hence,

f S L f(sk)e21riSksinc(1Tsu)e21rIXUdu = f f(u)sinc(1Tsu)e21riXUdu
A kEd' A

1
= -; fj(v)X[-S/2,S/2 j(X - v) dv

by Parseval's theorem. I

The connection between sampling theory and local averages has also
been noted independently by Feichtinger and Grochenig in a somewhat
different setting. They study irregular sampling for functions with A an
interval using frames and give an iterative procedure for reconstruction
from local averages [6, Thm. 7].

The accuracy of the approximating function r is given by the error
E =! - r where

E(X) = S L f(sk) f (1 - sine 1Tsu)e 21riu(X-sk)du. (6)
kEd' A

The error E will now be estimated in L 2-norm and pointwise.
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2, THE NORM OF THE ERROR 8

First the norm of the error is expressed in terms of the attenuation of
the spectrum,

2.1. THEOREM, When s satisfies (2), the norm 11811 of the error 8 satisfies

11811 2 = fj1 - ~X[-s/2.s/2)(U) f' !(u)12
du = fj 1 - _SI_':_:_;_U fl !(u)1 2

duo

(7)

Proof Since s satisfies (2), f(x) has representation (3). Next, let

N N

fN(X) = s L f(sk)xAx - sk) = s L f(sk) f e2rri(x-sk)u du,
k~-N k~-N A

so that for each x, f N(X) ~ f(x) as N ~ 00, and so that

N

f~(u) = s L f(sk)e-2rriskuXA(U),
k~ -N

Similarly, let

N

aN(x) = L f(sk)X[-s/2,s/2)(X - sk),
k~ -N

so that

N
tlN(u) = I':: f(sk) f(k+l/2)e-2rriux dx

k~-N s(k-l/2)

N

- A ( ) '" f( k) -2rrisku- X[-s/2.s/2) U I.J s e
k= -N

N

= ssinc(1Tsu) L f(sk)e-2rrisku,
k~ -N
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The Fourier transform rN of the N-th partial sum rN of r is given by

N

'N(U) = £IN(U)XA(U) = ssinc(1Tsu) L !(sk)e-2rriSkuXA(U)
k= -N

whence

N

rN(x) =sl L !(sk)sine(1Tsu)e 2rri(x-Sk)Udu
AK=-N
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and (5) follows. !N - rN = EN ~ E as N ~ 00, and so by Parseval's for
mula. Also

IIEN(U)11 2
= \I!N - rNI1 2

= IliN - 'NI1
2

= f liN(U) - rN(u)1
2

du = f liN(u)l\l - sine 1TSU)2 duo
A A

Finally,

I"E11 2
- £1/(u)12

(1 - sinc 1TSU)2 dul

~IIIEI12 -IIEN I1 21 +!fJliN(U)\2 -li(u)n(l - sinC1Tsu)2 du l,

and the result follows on letting N ~ 00. I
As a referee has pointed out, this theorem could also be proved using

Poisson's summation formula when A is an interval.

2.2. COROLLARY.

where

As S ~ 0,

Proof Since A is a bounded set of IR, (2) will be satisfied and hence
the above theorem will hold when s sufficiently small. Also, for small s,

and substituting for the integrand in (7) gives the required result. I
A more explicit asymptotic expression is obtained for functions ! with

A = (-w, w) and s ~ 1/2w (such functions are called lowpass signals).
The constant 1/5 is chosen for simplicity.
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2.3. COROLLARY. When A = (-w, w) and s ~ 1/2w,

Proof We note that

1- sinc(v) = ~; (1 - 4L~25 + 4.5[:4
6

.
7

+ ... ) < L~2 1_ /V/4)2'

Since v = rrsu, then Ivl ~ rrsw ~ rr/2 and I/O - (U/4)2) < 1.2. Hence,
from Theorem 2.1,

w rr 4s 4 u 4 ,2 rr 4s 4w4
w, 2

IleII < f 1.2 21f( u) I du = 1.2 2f I f( u) I du,
-w 36 36-w

from which the corollary follows. I
Thus our estimates are quadratic in s, and for the lowpass case quadratic

in w (when also sw ~ 1/2). In [7], Gr6chenig considers the problem of
irregular sampling in the lowpass case and obtains an estimate which is
linear in l), the supremum of the distance between consecutive sampling
points. In the case of regular sampling this estimate is linear in s -and w.
However application of his iteration technique then increases the order of
l) at each step.

It also follows from these results that "oversampling" (sampling at rates
which considerably exceed 2w) is very effective in reducing the error
arising from the processing. For example, eightfold oversampling (as
advertised on some compact disc players) reduces the energy of the error
by a factor of about 2-°, i.e., by about 98.4%.

When the set A outside which f vanishes is not an interval about the
origin, the error estimates are not necessarily so good.

2.4. COROLLARY. Suppose A = (-(c + Ow, -cw) U (cw, (c + Ow)
and that c > 1/(rrsw). Then

Ilell ~ (1 - _1_)llfll.
rrscw

Proof By definition,

. 2

IIel1 2 = 2!<c+IlW(1 _ Slllrrsu) If(u)!2 du
cw rrsu

~ (1 __1_)21IfI12. I
rrscw
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Thus if c is large (i.e, the signal has high frequency content only) the
error is going to be large unless the sampling interval s is very small. In
practice engineers do not reconstruct this type of signal (called bandpass)
by this technique (see also [1]).

A referee has pointed out that Theorem 2.1 can be extended to the
multidimensional case. In fact, the theorem can be placed into the abstract
setting of locally compact abelian groups, which includes the multidimen
sional case and which has the advantage of clarifying the relation between
the measure and the sampling interval. This method of reconstruction is
however used principally in audio-signal reconstruction and therefore this
generalisation is unlikely to be of practical use.

Let G be a locally compact abelian group with dual r, let (x, u) denote
a character and let the Haar measure on r be normalised so that the
Fourier inversion formula holds. Let A be a discrete subgroup of r with
r/ A compact and let H be the annihilator of A or equivalently the dual
of r/ A. Then H is discrete and G/ H is compact. Let n be a complete
set of coset representatives of r/ A in r and let K = mr(n) be the Haar
measure of n in r. Let I be a complete set of coset representatives of
G/ H in G. Then it can be shown that the Haar measure of I in G is K - I.

In the one-dimensional case G and its dual r are the real line with the
Haar measure of G Lebesgue measure; the character (x, u) = e2TTixu,

A = s-llL, H = slL, and 1= [-s/2, s/2). Note that J.L(I) = s.

2.5. THEOREM. Let f E L2( G) with f = 0 for u $. A ~ n. The error in
approximating f by the smoothed step-function r is

Proof By [5],

f(x) = K-
1 L f(h)XA(X - h),

hEH

with

feu) = K-
I L f(h)( -h, U)XA(U),

hEH

In this setting, the step-function approximation to f is given by

a(x) = L f(h)x/(x - h),
hEH
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(8)

with its Fourier transform given by

a(u) = I: f(h)( -h,u)X/(u).
hEH

Therefore, omitting the details of convergence, the Fourier transform of
the reconstructed function r is given by

feu) = x/(u) I: f(h)( -h, U)XA(U)
hEH

Hence,

Ilell =11/- fll =11/- KxJII =11/(1- Kx/)II
as required. I
Theorem 1.2 also extends naturally to locally compact abelian groups.
With the setting of Theorem 2.5, it can be shown that for each x E G.

rex) = f/(u)X/(u)(x,u)du = Kf f(w)dw
r /+x

3. POINTWISE ESTIMATES FOR e

Expression (6) for e(x) gives a simple estimate under the /1 assumption
that

L If(sk)1 < 00,

kE.f.

since

le(x)l:$ 1.3f.L(A)s L If(sk)/ = O(s).
kE.f.

The following theorem gives a more precise result.

3.1. THEOREM. For each x,

le(x)1 :$llfll(1)l - sinC7Tsu)2 dUf/2
Proof From (6),

e(x) =f(x) -rex) =s Lf(sk)!(l-sinc7Tsu)e21TiU(X-Skldu.
kEZ A



Now, write

APPROXIMATING PALEY-WIENER FUNCTIONS 443

g(y) = f (1 - sinc1Tsu)eZ7riUYdu = lxA(u)(l - sinc1Tsu)e 27r;"Ydu.
A ~

Then g E LZ(IR), g(u) = xjuXl - sinc 1TSU),

Moreover, from [4, Thm. 4],

e(x) = S 1: I(sk)g(x - sk) = (f* g)(x)
kEZ

= f l(u)g(u)e Z7r
;xu du,

A

and so by Cauchy's inequality,

( )

1/Z

= IIIII £(1- sinc1Tsu)zdu

as claimed. I
There is a more explicit estimate for Paley-Wiener functions I where

I(u) = 0 when lui> w, i.e., when I is a lowpass signal.

3.2. COROLLARY. Ulhen I vanishes outside (-w, w), il s ~ 1/2w

Ii 1T Z
S

Z
W S/ z

le(x)1 < 5/5 11/11.

Proof The proof follows from (8) following similar lines to the proof of
Corollary 2.3. I

4. AN ApPLICATION

The analysis in Theorem 2.1 suggests a modification of the standard
method for digital to analogue conversion which gives better signal recon
struction [2]. The improvement is achieved by altering the profile of the
step-function a as follows. The amplitude of each step is multiplied by a
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constant factor (3 z 1 but only held at this value for a fraction 0 < a ~ 1
of the sampling interval s, and a is set to zero for the remainder of the
sampling interval. Therefore, instead of (4), the step-function approxima
tion to ! is given by

a(t) = L (3!(sk)x[o.lT»(t - sk).
kEZ

The norm of the error (for a fixed sampling rate) is then given by

IIEI1 2 = f (1 - {3a sin1T'su )2If(u)1
2

duo
A 1T'SU

It is natural to choose (3 = 1/a, then the error is essentially O(a 2
). A

detailed analysis of this technique and some examples are given in [2]. A
suitable application for this improved digital-to-analogue conversion
method is a speech compression technique which employs multiband
sampling [lO]. For lowpass signals, quite different and highly effective
methods of improving signal reconstruction have been developed recently.

5. CONCLUSION

Both types of error estimate considered depend quadratically on the
sampling interval S. However, differences arise in the dependence of the
constants on the set A. This is most clearly seen in the case of lowpass
functions where A = (- w, w). The constant for the norm estimate de
pends on w 2, whereas for the pointwise error it depends on w 5/

2
•
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